Part I: Graphical Symplectic Algebra

Cole Comfort Joint work with: Robert I. Booth, Titouan Carette based on: [arXiv:2401.07914](https://arxiv.org/abs/2401.07914)

June 20, 2024

Motivation: I am bad at mathematics.

A **prop** is a strict symmetric monoidal category generated by a single object...

A compact prop also allows for wires to be bent/unbent:

= , = , = and = .

[Graphical linear algebra](#page-3-0)

Affine matrices: generators

Given a field K, finite dimensional affine transformations can be represented their homogeneous coordinates matrices $(T,S$ are matrices, \vec{a}, \vec{b} are vectors):

$$
\left[\begin{array}{c|c}\n\overline{7} & \overline{a} \\
\hline\n0 & 1\n\end{array}\right]\n\left[\begin{array}{c|c}\nS & \overline{b} \\
\hline\n0 & 1\n\end{array}\right] = \n\left[\begin{array}{c|c}\n\overline{7S} & \overline{7\overline{b}} + \overline{a} \\
\hline\n0 & 1\n\end{array}\right]
$$

The prop of affine transformations between finite dimensional vector spaces is generated by the homogeneous coordinate matrices:

Modulo the equations:

Example of matrix multiplication

The following diagram can be simplified to a normal form:

Following the paths from left to right gives us the homogeneous coordinate matrix:

a b b c x0 x1 x2 x3 x0b x1b x3a 1 c 0 x0b+x1b+x² x3a+c 1 ⇝ 0 0 0 0 0 b b 1 0 0 0 0 0 a c 1 x0 x1 x2 x3 1 = 0 x0b + x1b + x² x3a + c 1

Strictification and block matrices

Every prop can be strictified to an N-coloured prop:

This allows us to define block matrices/vectors diagrammatically:

Affine relations (Bonchi et al. [\[Bon+19\]](#page-51-0),Bonchi et al. [\[BSZ17\]](#page-51-1))

Given a field \mathbb{K} , the compact prop of \mathbb{K} -affine relations, AffRel_K, has:

- Morphisms $n \to m$ are affine subspaces $S \subseteq \mathbb{K}^n \oplus \mathbb{K}^m$.
- Composition relational, for $S : n \rightarrow m$, $T : m \rightarrow k$

 $R \circ S := \{ (\vec{x}, \vec{z}) \in \mathbb{K}^n \oplus \mathbb{K}^k \mid \exists \vec{y} \in \mathbb{K}^m : (\vec{x}, \vec{y}) \in S \text{ and } (\vec{y}, \vec{z}) \in R \}$

- Symmetric monoidal structure given by direct sum;
- **Compact structure** same as Rel.

AffRel_K is generated by the following relations, for all $a \in \mathbb{K}$:

$$
\begin{aligned}\n\boxed{m:\mathbb{R}:\mathbb{R} \longrightarrow \mathbb{R}} &:= \left\{ \left(\begin{bmatrix} a \\ \vdots \\ a \end{bmatrix}, \begin{bmatrix} a \\ \vdots \\ a \end{bmatrix} \right) \in \mathbb{K}^n \oplus \mathbb{K}^m \middle| a \in \mathbb{K} \right\} \\
\boxed{m:\mathbb{R}:\mathbb{R} \longrightarrow \mathbb{R}} &= \left\{ (\vec{b}, \vec{c}) \in \mathbb{K}^n \oplus \mathbb{K}^m \middle| \sum_{j=0}^{n-1} b_j + \sum_{k=0}^{m-1} c_k = a \right\} \\
\boxed{-a} &= \left\{ (b, ab) \mid b \in \mathbb{K} \right\} \\
\end{aligned}
$$

for all $a, b \in \mathbb{K}$, $c \in \mathbb{K}^{\times}$.

The embedding AffMat_K \hookrightarrow AffRel_K taking an affine transformation $T : n \to m$ to it's graph $\{(\vec{x}, T\vec{x}) \mid \vec{x} \in \mathbb{K}^m\}$ sends:

[Classical mechanics and](#page-11-0) [symplectic geometry](#page-11-0)

The extensional behaviour of an electrical circuits is characterised by how it transforms current and voltage;

- Ohm's law: The voltage around the node in a circuit is equal to the current multiplied by the resistance.
- Kirchhoff's current law: The sum of currents flowing into a node is equal to the sum of currents flowing out of the node.

Example

Given a linear resistor with resistance $r \in \mathbb{R}^{>0}$ on a wire with incoming current/votage (z_0, x_0) and outgoing current/voltage (z_1, x_1) :

- by KCL, currents equalize: $z_0 = z_1$;
- by OL, the outgoing current becomes: $x_1 = x_0 + z_0r$.

Following Baez et al. [\[BCR18\]](#page-51-2) and Baez and Fong [\[BF18\]](#page-51-3), we can represent electrical circuit components as real affine relations.

Using the string diagrams from Bonchi et al. [\[Bon+19\]](#page-51-0), decompose a wire into a current and voltage

...the resistor is represented as follows:

Example

$$
\begin{bmatrix} r \\ -\sqrt{v} \\ r \end{bmatrix} = \frac{2}{\sqrt{v}} \sqrt{v^2 + \left(\frac{v}{v}\right)^2}
$$

Example

Ideal wire junctions sum currents, and equalize voltages:

Example

Constant voltage source does nothing to current and adds to the voltage:

$$
\left[\begin{array}{c}\nu\\\hline\left(\begin{matrix} \uparrow\end{matrix}\right)\end{array}\right]=\frac{2}{\sqrt{\frac{\rho}{\nu}}}\sqrt{2}
$$

What is the more conceptual picture? 13

Classical mechanical systems can be represented by the configurations of abstract positions Z and momenta X :

For *n*-particles in Euclidean space, the space of possible configurations of *positions/momenta* $\mathbb{R}^{2n} \cong \mathbb{R}_{Z}^{n} \oplus \mathbb{R}_{X}^{n}$ is the **phase space**.

Table adapted from Smith [\[Smi93,](#page-53-0) page 23, table 2.1] and Baez and Fong [\[BF18\]](#page-51-3)

Affine Lagrangian subspaces

Definition

Two configurations $(\vec{z}, \vec{x}), (\vec{q}, \vec{p}) \in \mathbb{K}^{2n}$ of phase-space are **compatible** when:

$$
\vec{z}\cdot\vec{p}-\vec{x}\cdot\vec{q}=0
$$

The bilinear map

$$
\omega_n : \mathbb{K}^{2n} \oplus \mathbb{K}^{2n} \to \mathbb{K} \quad ((\vec{z}, \vec{x}) , (\vec{q}, \vec{p})) \mapsto \vec{z} \cdot \vec{p} - \vec{x} \cdot \vec{q}
$$

is a symplectic form, and the phase space $(\mathbb{K}^{2n},\omega_n)$ is a symplectic vector space.

An **affine Lagrangian subspace** is a *maximally compatible* affine subspace of a symplectic vector space.

Remark (Baez and Fong [\[BF18\]](#page-51-3), Baez et al. [\[BCR18\]](#page-51-2)) Resistors, voltages sources and junctions of wires are affine Lagrangian subspaces.

Example

In the phase-space of a single particle, (\mathbb{K}^2, ω_1) , the symplectic form measures area:

Compatible points are colinear, so affine Lagrangian subspaces are lines.

An affine Lagrangian subspaces don't represent single particle; but an ensemble of particles flowing along a trajectory.

Definition (Guillemin and Sternberg [\[GS79\]](#page-53-1),Weinstein [\[Wei82\]](#page-53-2)) The compact prop of affine Lagrangian relations $AffLagRel_{K}$ has:

- Morphisms $n \to m$, given by (possibly empty) affine Lagrangian subspaces of $(\mathbb{K}^{2n} \oplus \mathbb{K}^{2m}, \omega_n - \omega_m : \mathbb{K}^{2(n+m)} \oplus \mathbb{K}^{2(n+m)} \to \mathbb{K}).$
- **Composition** is given by relational composition.
- **Symmetric monoidal structure** is given by the direct sum.

Lemma

There is an embedding $\mathsf{AffRel}_\mathbb{K} \to \mathsf{AffLagRel}_\mathbb{K}$ given

- on objects by: $n \mapsto 2n$;
- on morphisms by: $(S + \vec{a}) \mapsto S^{\perp} \oplus (S + \vec{a}).$

For the geometrically inclined, this is induced by the embedding of a vector space $\mathbb{R}^n \hookrightarrow \mathcal{T}^*(\mathbb{R}^n) \cong (\mathbb{R}^n)^* \oplus \mathbb{R}^n \cong \mathbb{R}^{2n}$ into its cotangent bundle.

AffLagRel $_{\mathbb{K}}$ is generated by two spiders decorated by \mathbb{K}^2 ; interpreted in AffRel $_{\mathbb{K}}$ as:

Modulo both spiders, being commutative, undirected nodes,

as well as for all a, b, c, $d \in \mathbb{K}$ and $z \in \mathbb{K}^{\times}$:

The embedding $AffRel_{\mathbb{K}} \hookrightarrow AffLagRel_{\mathbb{K}}$ takes:

$$
\overbrace{m:\mathbb{C}:\overline{n}}\longmapsto\overbrace{m:\mathbb{C}:\overline{n}}^{0,0}\qquad\overbrace{m:\mathbb{C}:\overline{n}}^{a,\overbrace{n}}\longmapsto\overbrace{m:\mathbb{C}:\overline{n}}^{a,0}\qquad\overbrace{\neg a}\longmapsto\overbrace{\neg a}\longmapsto\overbrace{\neg a}
$$

Now that the position/momentum wires are bundled together, we have a more concise description of electrical circuit components:

AffLagRel $_{\mathbb{R}}$ allows us to cleanly compose electrical circuits:

Example

Consider two resistors with resistances $r_0, r_1 \in \mathbb{R}^{>0}$ composed in parallel.

Electrons nondeterministically flow through both resistors, where they are impeded. They extensionally behave like a resistor with resistance $1/(1/r_0 + 1/r_1)$. 21 This colour-swap rule corresponds to a change of refrence frame.

Where configurations of phase space can be represented as functions of position:

...or of momentum:

We can define higher-dimensional spiders by induction on the number of wires $k \in \mathbb{N}$. Take $n, m \in \mathbb{N}$, $a, b \in \mathbb{K}$, $\vec{v}, \vec{w} \in \mathbb{K}^k$ and $A \in \text{Sym}_k(\mathbb{K})$.

Scalable identities

Consider a network of resistors/voltage sources acting on n wires.

The extensional behaviour can be represented by a positive-definite $0 \prec R \in \mathsf{Sym}_n(\mathbb{R})$ called the $\mathsf{impedance\ matrix},$ and a voltage $\vec{\mathsf{\nu}} \in (\mathbb{R}^{>0})^n$

$$
\left[\begin{array}{c} \overrightarrow{v}, \overrightarrow{R} \\ \overrightarrow{O} \overrightarrow{O} \end{array}\right] = \left\{ \left(\begin{bmatrix} \overrightarrow{z} \\ \overrightarrow{x} \end{bmatrix}, \begin{bmatrix} \overrightarrow{z} \\ \overrightarrow{x} + \overrightarrow{R} \overrightarrow{z} + \overrightarrow{v} \end{bmatrix}\right) \mid \forall \overrightarrow{z}, \overrightarrow{x} \in \mathbb{R}^n \right\}
$$

The resistance between the *j*th and *k*th wire is $r_{i,k} = r_{k,j} \in \mathbb{R}$.

The change in voltage on wire *j* is $v_i \in \mathbb{R}$.

Black-boxed networks of resistors compose in parallel in the same way as single resistors composed in parallel:

We don't know the internal structure of the two networks, but we still can compute their extensional behaviour in parallel.

Part II:

Complete equational theories for classical and quantum Gaussian relations

Cole Comfort Joint work with: Robert I. Booth, Titouan Carette based on: [arXiv:2403.10479](https://arxiv.org/abs/2403.10479)

June 20, 2024

Recall that the phase-space on n particles in Euclidean space is the symplectic vector spaces $(\mathbb{R}^{2n}\cong (\mathbb{R}^n)_Z \oplus (\mathbb{R}^n)_X, \omega_n)$:

Where (maximally compatible, affinely constrained) mechanical circuits can be represented by string diagrams for AffLagRel_R.

"Quantized fragments" of quantum mechanics admit nondeterministic phase-space semantics:

[Stabiliser quantum mechanics](#page-31-0)

Finite dimensional quantum mechanics "lives in" (FVect_C, \otimes , C)...

Definition

Fix some odd prime p. The state space of a **quopit** is the p-dimensional vector space:

$$
\mathcal{H}_d \coloneqq \ell^2(\mathbb{Z}/d\mathbb{Z}) = \text{span}_{\mathbb{C}}\{\ket{0}, \cdots, \ket{d-1}\}
$$

Definition

The *n*-quopit <code>Pauli</code> group $\mathcal{P}^{\otimes n}_\rho\subset\mathsf{U}(\rho^n)$ is generated under tensor product and composition by:

$$
\mathcal{X} | k \rangle \coloneqq | k+1 \rangle \quad \text{and} \quad \mathcal{Z} | k \rangle \coloneqq e^{i \frac{2\pi}{p} k} | k \rangle
$$

Lemma

Because $XZ = e^{-i\frac{2\pi}{p}}$ $\overline{P} \ \mathcal{Z}\mathcal{X}$ every element of $\mathcal{P}^{\otimes n}_{\bm{\rho}}$ has the following form, $\chi(a) \mathcal{W}(\vec{z}, \vec{x}) \coloneqq e^{i \frac{2\pi}{p}}$ $\frac{2\pi}{p}$ a $\bigotimes^{n-1} \mathcal{Z}^{z_j} \mathcal{X}^{\mathsf{x}_j}$ $j=0$ for some $a \in \mathbb{F}_p$, $\vec{z}, \vec{x} \in \mathbb{F}_p^n$.

Lemma

Up to scalars, a maximal Abelian subgroups $S \subseteq \mathcal{P}_p^{\otimes n}$ uniquely determines a normalised state $|S\rangle$: $\mathcal{H}_{p}^{\otimes n}$ such that for all $P \in S$, $P \, |S\rangle = |S\rangle$.

Such states are called stabiliser states.

Remark

Two n-quopit Pauli operators $\chi(a)W(\vec{z}, \vec{x})$ and $\chi(b)W(\vec{q}, \vec{p})$ commute if and only if $\omega_n((\vec{z}, \vec{x}), (\vec{q}, \vec{p})) = 0.$

Corollary (Gross [\[Gro06\]](#page-52-2)) There is a bijection:

 $\{$ Maximal Abelian subgroups $S\subseteq \mathcal{P}_p^{\otimes n}\}\cong$ {affine Lagrangian subspaces of $\hat{S}\subseteq (\mathbb{F}_p^{2n},\omega_n)\}$ \cong {stabiliser states $\ket{\mathcal{S}}: \mathcal{H}_{\bm{p}}^{\otimes n} \}$

Given a Pauli $\chi(a) \mathcal{W}(\vec{z}, \vec{x}) \in S$:

 \overrightarrow{z} are the positions; \overrightarrow{x} are the momenta; \overrightarrow{a} a is determined by the affine shift.

Using the compact-closed structure of ($\mathsf{FVect}_{\mathbb{C}}$, \otimes , \mathbb{C}):

Definition

The compact prop of quopit **stabiliser circuits** is generated under tensor and composition of the linear operators:

- All quopit stabiliser states $0 \rightarrow n$;
- Caps $|j\rangle \otimes |k\rangle \mapsto \delta_{i,j}$ of type $2 \to 0$;
- \bullet The cup $\sum_{j=0}^{p-1}|j\rangle\otimes|j\rangle$ is already a stabiliser state of type $0\to 2.$

The composition of AffLagRel $_{\mathbb{F}_p}$ agrees with that of in <code>FVect $_{\mathbb{C}}$:</code>

Theorem (Comfort and Kissinger [\[CK22\]](#page-52-0)) AffLagRel $_{\mathbb{R}_p}$ isomorphic to quopit stabiliser circuits, modulo scalars.

Remark

The presentation of $AffLagRel_{\mathbb{F}_p}$ is the stabiliser ZX-calculus of Poór et al. [Poó+23], modulo scalars. 32 This is powerful enough to do quantum teleportation à la Abramsky and Coecke [\[AC04\]](#page-51-4) and Coecke and Kissinger [\[CK18\]](#page-52-3):

[Gaussian quantum mechanics](#page-36-0)

Definition

The continuous-variable 1-D quantum state space is the Hilbert space:

$$
L^2(\mathbb{R}) := \left\{ \varphi : \mathbb{R} \to \mathbb{C} \, \Big| \, \int_{\mathbb{R}} |\varphi(x)|^2 \, \mathrm{d}x < \infty \right\}
$$

The morphisms are bounded linear maps $(L^2(\mathbb{R}))^{\otimes n}\to (L^2(\mathbb{R}))^{\otimes m}.$

Definition

The $\bf{displacement}$ operators $\hat{Z},\hat{X}:L^2(\mathbb{R})\to L^2(\mathbb{R})$ are the CV-version of Paulis:

$$
\hat{Z}(s)\circ\varphi(r)\coloneqq\text{e}^{i2\pi rs}\varphi(r)\quad\text{and}\quad\hat{X}(s)\circ\varphi(r)\coloneqq\varphi(r-s)\quad\text{for all}\quad r,s\in\mathbb{R},\ \varphi\in L^2(\mathbb{R})
$$

The *n*-qumode Heisenberg-Weyl group $\mathcal{HW}^{\otimes n}$ is generated by displacement operators by tensor product and composition, where every Heisenberg-Weyl operator has the form:

$$
\chi(a) \mathcal{W}(\vec{z}, \vec{x}) \coloneqq e^{i 2\pi a} \bigotimes_{j=0}^{n-1} \hat{Z}(z_j) \hat{X}(x_j)
$$

Lemma

Affine Lagrangian subspaces of $(\mathbb{R}^{2n},\omega_n)$ are in bijection with maximally Abelian subgroups of $\mathcal{HW}^{\otimes n}$, modulo scalars.

Problem: Given an affine Lagrangian subspace $S \subseteq (\mathbb{R}, \omega_n)$, there is no non-zero state $|S\rangle : (L^2(\mathbb{R}))^{\otimes n}$ such that $\mathcal{W}(\vec{z}, \vec{x}) |S\rangle$ for all $(\vec{z}, \vec{x}) \in \mathbb{R}^n!$

None of the states in $AffL$ agRel_R can be represented in Hilbert spaces!!!

 $\{\textsf{Maximal Abelian subgroups } S\subseteq \mathcal{HW}^{\otimes n}\}\cong \{\textsf{affine Lagrangian subspaces of }\hat{S}\subseteq (\mathbb{R}^{2n},\omega_n)\}$ $\widetilde{\mathcal{Z}}\{\textsf{stabiliser states} \; | \mathcal{S}\rangle : (L^2(\mathbb{R}))^{\otimes n}\}$

Definition

An *n*-variate Gaussian distribution $\mathcal{N}(\Sigma, \vec{\mu})$ consists of a positive semidefinite covariance matrix $\Sigma \in \text{Sym}_n(\mathbb{R})$ and a **mean** vector $\vec{\mu} \in \mathbb{R}^n$.

When Σ is positive-definite, $\mathcal{N}(\Sigma, \vec{\mu})$ admits a probability density function.

Proposition

A 2n-variate Gaussian probability distribution $\mathcal{N}(\Sigma,\vec{\mu})$ on phase-space $(\mathbb{R}^{2n},\omega_n)$ corresponds to a bounded state on $(L^2(\mathbb{R}))^{\otimes n}$ if and only if:

-
- $\Sigma + i \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$ is positive semidefinite. \int principle for pure states $\begin{bmatrix} 0 & I_n \end{bmatrix}$ $-I_n$ 0 1 is positive semidefinite.

• Σ is positive definite; \S o that $\mathcal{N}(\Sigma, \vec{\mu})$ has a density function • $det(\Sigma) = 1$; $\qquad \qquad$ respects Heisenberg's uncertainty

Call this a quantum Gaussian distribution.

Example

The quantum vacuum state $|0\rangle$: $L^2(\mathbb{R})$ is represented by the Gaussian distribution

 Φ_1 is the unique quantum Gaussian distribution on (\mathbb{R}^2, ω_1) invariant under rotation. The Quantum Gaussian distribution Φ_n for $\ket{0}^{\otimes n}$ has the same universal property of being invariant under rotations (symplectic rotations $SO(\mathbb{R}, 2n) \cap Sp(\mathbb{R}, 2n)$).

Phase-space diagrams generated by Strawberry Fields/matplotlib

The isomorphisms in $AffLagRel_{\mathbb{K}}$ have the form:

Definition

An affine automorphism on $(\mathbb{K}^{2n},\omega_n)$ is a $\mathsf{symplectomorphism}$ when it preserves the symplectic form.

Lemma

Quantum Gaussian states are vacuum states acted on by affine symplectomorphisms.

Example

For $n=1$, recall that $\omega_1:\mathbb{R}^2\oplus\mathbb{R}^2\to\mathbb{R}$ measures area in $\mathbb{R}^2.$

Therefore, quantum Gaussian states on (\mathbb{R}^2, ω_1) are generated by acting on the vacuum state with area-preserving affine isomorphisms.

Picturing area-preservation

For example, we can squeeze the Gaussian distribution for the vacuum state state:

Changing the mean and rotating still is allowed.

But we can not make Φ_1 more concentrated:

This violates Heisenberg's uncertainty principle.

In phase-space CV stabiliser states do not have strictly positive definite covariance.

So they are not quantum Gaussian states.

However, they can be approximated with quantum Gaussian states:

Because the vacuum state is the unique permissible Gaussian distribution in phase-space distribution invariant under rotation:

Theorem (Booth et al. [\[BCC24a\]](#page-52-4)) The Gaussian state can be freely added to ${\mathop{\mathrm{Aff}}\nolimits}$ LagRel $_\mathbb{R}$ as a generator $\circledcirc\!$, such that for all $\vartheta \in [0, 2\pi)$ and $\theta \in (-\pi, \pi)$:

This contains both quantum Gaussian states and formal CV stabilisers.

There is an equivalent formulation using the complex numbers

Proposition

Quantum Gaussian states/CV stabilisers can be represented by affine Lagrangian subspaces $S + \vec{a} \subseteq (\mathbb{C}^{2n}, \omega_n)$, where:

- \bullet \vec{a} is real;
- for all $\vec{x} \in S$, $i\omega_n(\overline{\vec{x}}, \vec{x}) \geq 0$.

In other, words, we can represent the vacuum state as follows:

Theorem (Booth et al. [\[BCC24a\]](#page-52-4))

The Gaussian ZX-calculus is equivalent to adding the state $[0, i]$ \rightarrow to the image of the embedding $AffLagRel_{\mathbb{R}} \hookrightarrow AffLagRel_{\mathbb{C}}$.

Dirac delta distribution Caussian density function

We can interpret the continuous-variable quantum teleportation algorithm of Braunstein and Kimble [\[BK98\]](#page-52-5):

[Fin](#page-49-0)

[References](#page-50-0)

- [AC04] S. Abramsky and B. Coecke. "A categorical semantics of quantum protocols". In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004. 2004, pp. 415–425.
- [BCR18] John C. Baez, Brandon Coya, and Franciscus Rebro. "Props in network theory". In: Theory and Applications of Categories 33.25 (2018), pp. 727–783.
- [BF18] John C. Baez and Brendan Fong. "A compositional framework for passive linear networks". In: Theory and Applications of Categories 33.38 (2018), pp 1158–1222.
- $[Bon+19]$ Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. "Graphical affine algebra". In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2019, pp. 1–12.
- [BSZ17] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. "Interacting Hopf algebras". In: Journal of Pure and Applied Algebra 221.1 (2017), pp. 144–184.
- [BCC24a] Robert I. Booth, Titouan Carette, and Cole Comfort. *Complete equational* theories for classical and quantum Gaussian relations. 2024.
- [BCC24b] Robert I. Booth, Titouan Carette, and Cole Comfort. Graphical Symplectic Algebra. 2024.
- [BK98] Samuel L Braunstein and H J Kimble. "Teleportation of Continuous Quantum Variables". In: Physical Review Letters 80.4 (1998), p. 4.
- [CK18] Bob Coecke and Aleks Kissinger. "Picturing Quantum Processes: A First Course on Quantum Theory and Diagrammatic Reasoning". In: Lecture Notes in Computer Science. Springer International Publishing, 2018, pp. 28–31.
- [CK22] Cole Comfort and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations". In: Electronic Proceedings in Theoretical Computer Science 372 (Nov. 2022), pp. 338–351.
- [Gro06] D. Gross. "Hudson's theorem for finite-dimensional quantum systems". In: Journal of Mathematical Physics 47.12 (Dec. 2006).
- [GS79] Victor Guillemin and Shlomo Sternberg. "Some Problems in Integral Geometry and Some Related Problems in Micro-Local Analysis". In: American Journal of Mathematics 101.4 (Aug. 1979), p. 915.
- $[Po6+23]$ Boldizsár Poór, Robert I. Booth, Titouan Carette, John Van De Wetering, and Lia Yeh. "The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification". In: Electronic Proceedings in Theoretical Computer Science. Twentieth International Conference on Quantum Physics and Logic. Vol. 384. Paris, France, Aug. 29, 2023, pp. 220–264.
- [Smi93] Lorcan Stuart Peter Stillwell Smith. "Bond Graph Modelling of Physical Systems". PhD thesis. University of Glasgow, 1993.
- [Wei82] Alan Weinstein. "The symplectic "category"". In: ed. by Heinz-Dietrich Doebner, Stig I. Andersson, and Herbert Rainer Petry. Red. by A. Dold and B. Eckmann. Vol. 905. Book Title: Differential Geometric Methods in Mathematical Physics Series Title: Lecture Notes in

Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 45–51.