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String diagrams

String diagrams

Compact closed categories have the syntax:

f ;g... ... f... ... g ...= =f ⊗ g
... ... f... ...

g... ...... ...

= =f ... ...... f...... ...

= = = =

It is an ongoing area of research to find generators and
equations for categories in terms of these string diagrams.

What parts of mathematics/physics/computer science can be
reformulated in purely graphical terms?
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Generators and equations for affine relations

Affine relations

Given a field K, affine relations over K, AffRelK has:
Objects: natural numbers;
Maps: n → m are affine subspaces of Kn ⊕Km;
Identity: 1n := {(v⃗ , v⃗) ∈ Kn ⊕Kn};
Composition: Given S ⊆ Kn ⊕Km, R ⊆ Km ⊕Kk ,

S;R := {(v⃗ , w⃗) ∈ Kn⊕Kk | ∃u⃗ ∈ Km, (v⃗ , u⃗) ∈ S, (u⃗, w⃗) ∈ R}

Compact closed structure:
Symmetric monoidal structure is pointwise direct sum
Caps and cups are given by the relations{(

∗,
[
v⃗
v⃗

])
∈ K0 ⊕Kn+n

}
and

{([
v⃗
v⃗

]
, ∗
)

∈ Kn+n ⊕K0
}



Generators and equations for affine relations

Generators for Affine Relations

AffRelK is generated by spiders and scalar multiplication,

r
n ... m...

zAR

GAA
:=

{([a...
a

]
,

[a...
a

])
∈ Kn ⊕Km

∣∣∣∣∣ a ∈ K

}
r

n ... m...a
zAR

GAA
:=

(b⃗, c⃗) ∈ Kn ⊕Km

∣∣∣∣∣∣
n−1∑
j=0

bj +
m−1∑
k=0

ck = a


J a KAR

GAA := {(b,ab) | b ∈ K}

for all a ∈ K.



Generators and equations for affine relations

Equations for Affine Relations
Mod the equations making spiders into undirected graphs and:

=

=

=

=

= = =

= = =

= =

=

=

=

=

=

=

=

=

=

=

......

......
...

...
...

...

......

......

...

...

...

...

ba ab

a
b a + b

b

a a
a

aa
a

a
0

1

c

c

...... ......

=

=

1 1

a ab

a a
a

a

0

b

a

a + b

This was originally proved by [BPSZ19]. The original
presentation is slightly different.



Generators and equations for affine relations

Strictification and block matrices
By working in the strictification of AffRelK we can bundle up
multiple wires together (drawn thick):

... ... ... = ... ... ...=n1Σnj

nk

n1

nk

Σnj

n1

nk

n1

nk

n1

nk

n1

nk

Therefore we can define higher dimensional spiders:

:=m... n... ... ...
... ......

... :=m ... n... ... ...
... ......

...k + 1 k + 1

k + 1 k + 1

k k

k k

k + 1 k + 1

k + 1 k + 1

k k

k k

[
a
v⃗

]

v⃗

a

This gives us an inductive definition of block matrices

:=A B
C D

A
B
C
D



Generators and equations for affine relations

The Kernel and Image

The strictification makes the normal forms easy to state.

Every affine subspace is the kernel of an affine matrix
(T , v⃗) : n → m:

s
T

v⃗
{
= {(w⃗ , ∗) ∈ Kn ⊕K0 | T w⃗ = v⃗} ∼= ker(T , v⃗)

And similarly, for the image:
s

T
v⃗

{
= {(∗,T w⃗ + v⃗) | ∀w⃗ ∈ Kn} ∼= im(T , v⃗)
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Quantum mechanics

Purely quantum mechanics in finite dimensions
Given some fixed 2 ⩽ d ∈ N, the state space for n-qudits is:

H⊗n
d := (spanC{|j⟩}j∈Z/dZ)

⊗n ∼= Cdn

H⊗n
d is interpreted as the state space for n-particles, each with

d possible positions |0⟩ , · · · , |d − 1⟩.

What position “means” here is a bit unintuitive...

An n-qudit quantum system is prepared and evolves as follows:
Pure states: normalized vectors in H⊗n

d , ie:∑
v⃗∈(Z/dZ)n

av |v⟩ st.
∑

v⃗∈(Z/dZ)n

|av |2 = 1

Quantum evolution: unitary operators H⊗n
d → H⊗n

d
Unitaries preserve pure states.



Quantum mechanics

Hilbert spaces
Pure qudit quantum mechanics lives in qudit Hilbert spaces:
Objects: generated by H⊗n

d , for all n ∈ N;
Maps: linear operators;
Monoidal product: Bilinear tensor product;

Compact structure: 1 7→
d−1∑
j=0

|j⟩⟨j | and |j⟩⟨k | 7→ ⟨j |k⟩.

Dagger: Hermitian adjoint (complex conjugation)
Compact closure means that we can define linear maps

|k⟩ 7→
∑

j

aj,k |j⟩

in terms of states: ∑
j,k

aj,k |j⟩⟨k |

Where {⟨j |} is the dual basis of {|j⟩}.



Quantum mechanics

Quantum measurement: Born rule

A pure quantum state |φ⟩ : H can be represented by the rank-1
projector

|φ⟩⟨φ| : H → H

up to a global complex phase e2πia, for some a ∈ [0.2π).

A projection-valued measurement on a state space H is
defined with respect to an indexed orthonormal basis
B = {

∣∣ψj
〉
}j∈J for H.

Measuring a state |φ⟩ with respect to the basis B yields
outcome j with probability

∣∣〈ψj
∣∣φ〉∣∣2.



Quantum mechanics

Quantum measurement: mixed states

Measuring |φ⟩ with respect to basis B can be reformulated in
terms of applying the following operator to |φ⟩⟨φ|:

pB : H⊗H∗ → H⊗H∗;

|φ⟩⟨φ| 7→
∑
j∈J

∣∣ψj
〉〈
ψj
∣∣ |φ⟩⟨φ| ∣∣ψj

〉〈
ψj
∣∣ =∑

j∈J

∣∣〈ψj
∣∣φ〉∣∣2 ∣∣ψj

〉〈
ψj
∣∣

These probabilistic mixtures of pure states are called mixed
quantum states.



Quantum mechanics

Formally adding probabilistic mixtures

There is a category where measurement pB is a map:

Definition ([Sel07])

Given †-compact-closed C, CPM(C) has:
Objects are objects of C;
Maps A → B are given by maps A ⊗ A∗ → B ⊗ B∗ in C of
the form:

TrX f :=
f

(f ∗)†

A

A∗

B

B∗

for some object X ∈ C and map f : A → B ⊗ X in C.
†-compact closed structure pointwise in C.



Quantum mechanics

Mixed quantum mechanics in finite dimensions

A map f : A → B in CPM(C) trace-preserving when
TrB f = TrA.

Trace preserving states in CPM(FHilb) are mixed quantum
states.

Trace-preserving maps preserve mixed quantum states.

In CPM(FHilbd), we can prepare and evolve qudit systems
using the two classes of operations:

Mixed quantum states: trace-preserving states H⊗n
d ;

Quantum evolution: trace-preserving maps H⊗n
d → H⊗m

d .



Phase space and affine Lagrangian relations

Outline

1 String diagrams

2 Generators and equations for affine relations

3 Quantum mechanics

4 Phase space and affine Lagrangian relations

5 Phase-space representation in finite-dimensional QM

6 Phase-space representation in infinite-dimensional QM

7 Research outlook: what remains to be done



Phase space and affine Lagrangian relations

State space vs phase space

In quantum mechanics Hn
d is interpreted as a space of n

particles with d possible positions.

Quantum states are described by probabilistic mixtures of
normalized vectors in Hn

d .

What if we regard states in terms of their phase space?
Ie. the configurations of positions and momenta.

• How expressive is this?
• What are the categorical semantics?
• What is the unitary evolution?



Phase space and affine Lagrangian relations

Symplectic vector spaces i
A finite-dimensional vector space V is symplectic when it is
equppied with an alternating, bilinear, non-degenerate bilinear
form ω : V ⊕ V → K.
A symplectomorphism T : (V , ω) → (V ′, ω) is a linear
isomorphism that preserves the symplectic form.

Theorem (Linear Darboux)
Every f.d symplectic vector spaces is symplectomorphic to
(K2n, ωn) for some n ∈ N, where

ω

([
z⃗
x⃗

]
,

[
p⃗
q⃗

])
:= z⃗Tq⃗ − x⃗Tp⃗

(K2n ∼= Kn ⊕Kn, ωn) is the phase-space of configurations of
positions and momenta of n-particles.

Symplectomorphisms are unitary evolution.



Phase space and affine Lagrangian relations

Symplectic vector spaces ii

The symplectic complement of an affine subspace S + a⃗ of
(V , ω) is:

Sω + a⃗ :=
{

v⃗ ∈ V
∣∣ ∀s⃗ ∈ S : ω(v⃗ , s⃗) = 0

}
+ a⃗ ⊆ V

An affine subspace S + a⃗ of a symplectic vector space (V , ω) is:
isotropic if S ⊆ Sω (so that for all s⃗, t⃗ ∈ S, ω(⃗t , s⃗) = 0);
coisotropic if Sω ⊆ S;
Lagrangian if it is both isotropic and coisotropic (S = Sω).

The elements (z⃗, x⃗) of an affine Lagrangian subspace
S ⊆ (K2n, ωn) are interpreted as the possible configurations of
abstract positions z⃗ and momenta x⃗ in a maximally constrained
state S.



Phase space and affine Lagrangian relations

Affine Lagrangian relations
The compact prop of affine Lagrangian relations AffLagRelK:

Objects: natural numbers;
Maps: n → m are affine Lagrangian subspaces of
(K2n ⊕K2m, ωn,m), where:

ωn,m((v⃗I , v⃗O), (w⃗I , w⃗O)) := ωm(v⃗O, w⃗O)− ωn(v⃗I , w⃗I)

Composition/identities/monoidal structure:
Same as in AffRelK;
Compact structure:




z⃗
z⃗
x⃗
−x⃗

, ∗
 ∈ K4n ⊕K0

 and


∗,


z⃗
z⃗
x⃗
−x⃗


 ∈ K0 ⊕K4n

;

Dagger structure:

S† :=

{([
z⃗I
−x⃗I

]
,

[
z⃗O
−x⃗O

])∣∣∣∣([z⃗I
x⃗I

]
,

[
z⃗O
x⃗O

])
∈ S

}
.



Phase space and affine Lagrangian relations

Generators for affine Lagrangian relations

Given a field K, AffLagRelK is generated by,

s
m ... n...

a, b
{GSA

ALR
:=





z⃗
x
...m

x

 ,


z⃗ ′

x
... n

x



∣∣∣∣∣∣∣∣
z⃗ ∈ Km, z⃗ ′;∈ Kn, x ∈ K :

m−1∑
j=0

zj −
n−1∑
k=0

z ′
k + bx = a


s

m ... n...
a, b

{GSA

ALR
:=





z
...m

z
x⃗

 ,

−z
... n

−z
x⃗ ′



∣∣∣∣∣∣∣∣
x⃗ ∈ Km, x⃗ ′ ∈ Kn, z ∈ K :

m−1∑
j=0

xj +
n−1∑
k=0

x ′
k − bz = a


for all a,b ∈ K, n,m ∈ N.



Phase space and affine Lagrangian relations

Equations for affine Lagrangian relations

Modulo spiders being undirected, coloured graphs and,

=

=

z
z

z
z

=... ... ......

ba -ab=

a

b
a + b=

===

==
=

......

......
...

...
...

...

=
......

......
...

...
...

... = =

:=a

:= 1

:=− −1 :=a −a :=a a

... ... ... ...:= ... ... ... ...:=

1, 0 1, 0
a, 0a, 0

a, 0

a, b z-1a, z-2b

a, 0

c, d

a, b

c, d

a+c,
b+d

a, b

c, d

a+c,
b+d

0, -a 0, -a

0, a
0, 0 0, 0

for all a,b, c,d ∈ K, z ∈ K×.



Phase space and affine Lagrangian relations

The strictification of affine Lagrangian relations
Define higher dimensional spiders, for n,m ∈ N, a,b ∈ K,
v⃗ , w⃗ ∈ Kk and A ∈ Symk (K):

:= w⃗
T

m... n...
...

...

...
...

...

...
k + 1 k + 1

k + 1 k + 1

k k

kk
[

a
v⃗

]
,

[
b w⃗T

w⃗ A

] a, b

v⃗, A

:=

-w⃗

m... n...
...

...

...
...

...

...
k + 1 k + 1

k + 1 k + 1

k k

kk
[

a
v⃗

]
,

[
b w⃗T

w⃗ A

] a, b

v⃗, A

As well as the Fourier transform: :=n + 1 n + 1
n n

A k -coloured grey spider with n inputs and m outputs
parametrizes an undirected coloured open graph.
For example, with n = 0, m = 1 and k = 3:

X1,3

X1,2

X2,3

=3

x1, X1,1

x2, X2,2

x3, X3,3

x⃗, X



Phase space and affine Lagrangian relations

Normal form for affine Lagrangian relations

Every state in AffLagRelK is uniquely represented by a
partially-open graph state:

ς

m + n
n
m

 x⃗
0m
s⃗

 ,

 0 1m F
1m 0 0
F T 0 S



for some m ⩽ n ∈ N, x⃗ ∈ Km, s⃗ ∈ Kn−m, F ∈ Mm,n−m(K) and
S ∈ Symn−m(K), and permutation matrix ς ∈ Mn,n(K).
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Phase-space representation in finite-dimensional QM

Phase-space representation
in finite-dimensional quantum mechanics

For odd prime p, AffLagRelFp is projective representation of
pure qupit stabilizer quantum circuits.

Every affine Lagrangian relation S + a⃗ : 0 → n is mapped to a
stabilizer state |S⟩ : H⊗n

p , up to global phase exp(2πiα):

|S⟩⟨S| := 1
pn

∑
[⃗zT x⃗T]T∈S

n−1⊗
j=0

exp
(
2πiaj/p

)
exp
(
2πizj/p

) ∣∣j + xj
〉〈

j
∣∣

In other words, up to scalars, AffLagRelFp is a †-compact
closed subcategory of FHilb.



Phase-space representation in finite-dimensional QM

Pure stabilizer quantum mechanics

Pure stabilizer evolution allows for two kinds of operations.

An n-qupit stabilizer quantum system has:
Pure states: stabilizer states on H⊗n

p ,
represented by affine Lagrangian subspaces of (Fp

2n, ωn);

Quantum evolution: Clifford operators H⊗n
p → H⊗n

p ,
represented by symplectomorphisms on (Fp

2n, ωn).

What about mixed states?



Phase-space representation in finite-dimensional QM

Phase-space representation of mixed states

Theorem
CPM(AffLagRelK) ∼= AffCoIsotRelK

This is presented by adding a single generator interpreted as
the discard relation:

r z
=

{([
z
x

]
, ∗
)

∈ K2 ⊕K0
}

Modulo discarding of affine symplectomorphisms+states
(isometries):

a a === =
a, b

In AffCoIsotRelFp ↪→ CPM(FHilb), this is interpreted as
discarding a quantum state.
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Phase-space representation in infinite-dimensional QM

Naïve phase space representation
in infinite-dimensional quantum mechanics

The Hilbert space L2(R) is the state space of a qumode
and L2(Rn) ∼= (L2(R))⊗n with the state space of n-qumodes:

L2(Rn) :=

{
f : Rn → C

∣∣∣∣ ∫
Rn

|f (v⃗)|2 dv⃗ <∞
}

The maps between Hilbert spaces are continous linear
operators.

Affine symplectomorphisms on R2n are a projective
representation of Gaussian unitaries between n-qumodes.

Projection onto real affine Lagrangian subspaces aren’t
continuous.
Eg, an affine Lagrangian subspace of (R2, ω1) is a line!



Phase-space representation in infinite-dimensional QM

Intuition: Gaussian convolution

We want to add Gaussian noise to smooth things out:

Dirac delta “distribution”
at x = 0

Gaussian density function

� //

rendered with strawberryfields.py and matplotlib.py



Phase-space representation in infinite-dimensional QM

Gaussian probability theory

An n-variable Gaussian distribution N (Σ, µ⃗) is a probability
distribution on Rn determined by some 0 ⪯ Σ ∈ Symn(n), called
the covariance matrix and a vector µ⃗ ∈ Rn, called the mean.
The characteristic function of N (Σ, µ⃗) is given by

u⃗ 7→ exp

(
i u⃗Tµ⃗− 1

2
u⃗TΣu⃗

)
Moreover, when 0 ≺ Σ, then N (Σ, µ⃗) has a density function
given by

u⃗ 7→ exp

(
−1
2

(u⃗ − µ⃗)TΣ−1(u⃗ − µ⃗)

)
/
√
(2π)n det(Σ)

We perform Gaussian convolution on AffLagRelR to obtain a
continuous variable phase-space semantics....



Phase-space representation in infinite-dimensional QM

Gaussian quantum states

An n-qumode Gaussian state φ ∈ L2(Rn) has the form:

φ
(
x⃗
)
= exp(iα) exp

(
i s⃗Tx⃗

)
4
√

det(Im(Φ))/πn exp
(

i(x⃗ − t⃗ )TΦ(x⃗ − t⃗ )/2
)

where α ∈ [0,2π), s⃗, t⃗ ∈ Rn, and Φ ∈ Symn(C) with Im(Φ) ≻ 0.
We call such a matrix Φ a phase matrix, and the vector[
s⃗ T t⃗ T

]
T ∈ R2n a displacement.

Together, they characterise the Gaussian state up to the “global
phase” exp(iα).

There is an important Gaussian state on L2(R) called the
vacuum with trivial displacement and phase matrix i .



Phase-space representation in infinite-dimensional QM

Wigner representation
The Wigner transform is a real-valued isomorphism
W(−) : L2(Rn) → L2(R2n):

Wφ

(
q⃗
p⃗

)
:=

1
πn

∫
Rn
φ
(

q⃗ + ξ⃗
)
φ
(

q⃗ − ξ⃗
)
exp

(
2i ξ⃗ Tp⃗

)
d ξ⃗

The Wigner transform of an n-qumode Gaussian state with
phase matrix Φ and displacement µ⃗ is the density function of
the Gaussian distribution N (Σ, µ⃗) on R2n with:

Σ :=

[
Im(Φ) + Re(Φ) Im(Φ)−1 Re(Φ) −Re(Φ) Im(Φ)−1

− Im(Φ)−1 Re(Φ) Im(Φ)−1

]
Conversely, given a Gaussian distribution N (∆, µ⃗) on R2n with,

∆ :=

[
A B
BT C

]
with det(∆) = 1 and ∆+ iωn ⪰ 0

there is a Gaussian state with Φ := −BC−1 + iC−1.



Phase-space representation in infinite-dimensional QM

Phase-space representation of Gaussian QM

A complex affine Lagrangian relation (S + a⃗) : n → m is
positive when for all v⃗ ∈ S, iωn,m

(
v⃗ , v⃗

)
⩾ 0; and a⃗ ∈ R2n.

Positive affine Lagrangian relations form a subcategory
AffLagRel+C ↪→ AffLagRelC.

The Wigner representation of n-qumode Gaussian quantum
states are positive affine Lagrangian relations 0 → n.

Positive affine Lagrangian relations are generated by adding
shearing by i to AffLagRelR, interpreted as the quantum
vacuum state: 0, i



Phase-space representation in infinite-dimensional QM

Back to convolution

Dirac delta “distribution” Gaussian density function

�

convolution by

N
([

ε 0
0 ε-1

]
,

[
0
0

])
//

OO

��

OO

��

0, 0 �

√
ε = =

0, i 0, iε
0, iε

// 0, iε



Phase-space representation in infinite-dimensional QM

Generators and equations for Gaussian QM
Syntactically, adding the vacuum is generated by freely
codiscarding symplectic rotations SO(2n) ∩ Sp(2n) and effects
in AffLagRelR.

That is for all a,b ∈ R, θ, ϑ ∈ [0,2π) with ϑ /∈ {π/2,3π/2}:

=cos(θ)

=

cos(ϑ)

- sin(ϑ)

sin(ϑ)

cos(ϑ)

=

0, tan(θ)

0, cos(θ) sin(θ)

0, i
0, i

0, i

0, i

0, i0, i

0, i

a, b



Phase-space representation in infinite-dimensional QM

Intuition for discarding
The vacuum Gaussian on 1-qumode is the standard bivariate
normal distribution:

0, i oo //

This is the only Wigner representation of a state which is
invariant under rotation.

Higher dimensions harder to visualize.



Phase-space representation in infinite-dimensional QM

Picturing quantum teleportation
Following [BK]:
Alice and Bob share a Gaussian Bell state with covariance of
position 0 < ε ∈ R.
Alice records the homodyne measurement outcome (a,b) ∈ R2

in the Bell basis, and sends it to Bob,
who performs the phase correction p̂−bq̂−a:

= =

= = =

Bob
Alice -a, 0

-b, 0

a, 0

b, 00, iε
a, 0

-b, 0

a, 0

b, 0

0, iε a, 0a, 0

0, iε

a, 0 a, 0

0, iε a, 0 0, iε a, 0 -a, i/ε

The result is a quantum channel with an error; however, in the
infinitely-squeezed limit of ε = 0 there is no error.
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Research outlook: what remains to be done

Conclusion

We have turned the following Grassmanians into categories:
Affine Lagrangian/ coisotropic /positive Lagrangian

And given generators and relations+quantum interpretations.

What is next?
Orthogonal Grassmanian:
fermionic phase-space representation.
Lagrangian with respect to inner product.

Twisted affine coisotropic Grassmaninan:
Quantum dynamics K((s))-affine subspaces.
Coisotropic with respect to Hermitian form
ω′

n,m(f (s),g(s)) := ωn,m(f (s),g(1/s))
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