A ZX-calculus for

continous-variable Gaussian quantum circuits

Cole Comfort Joint work with: Robert I. Booth, Titouan Carette based on: [arXiv:2403.10479,](https://arxiv.org/abs/2403.10479) [arXiv:2401.07914](https://arxiv.org/abs/2401.07914)

May 21, 2024

[Stabiliser quantum mechanics](#page-1-0)

Definition Pauli groups $\mathcal{P}_p^{\otimes n}$ generated by:

$$
\mathcal{X}\,|k\rangle = |k+1\rangle \quad \text{ and } \quad \mathcal{Z}\,|k\rangle = e^{i\frac{2\pi}{p}k}\,|k\rangle
$$

Definition

Each maximal Abelian subgroup $S \subseteq {\mathcal P}_\rho^{\otimes n}$ uniquely determines a pure quantum state $|S\rangle$: $\mathcal{H}_{p}^{\otimes n}$ such that for all $U \in S$, $U|S\rangle = |S\rangle$.

S is called the stabiliser group associated to the stabiliser state $|S\rangle$ and vice-versa.

- If S were not maximal then $|S\rangle$ would not be pure.
- If S were not Abelian then $|S\rangle$ would not be well-defined.

Lemma

The stabiliser group of an n-quopit stabiliser state is represented by an affine $S \subseteq \mathbb{F}_p^{2n}$.

Each
$$
(\vec{z}, \vec{x}) \in \mathbb{F}_p^{2n}
$$
 is identified with $\bigotimes_{j=0}^{n-1} \mathcal{Z}^{z_j} \mathcal{X}^{x_j} : \mathcal{H}_p^{\otimes n} \to \mathcal{H}_p^{\otimes n}$

Lemma

Conversely, every n dimensional affine subspace $S \subseteq \mathbb{F}_p^{2n}$ corresponds to a stabiliser state precisely when all the corresponding Pauli operators commute.

> That is when, for all $(\vec{z}, \vec{x}), (\vec{q}, \vec{p}) \in \mathbb{F}_p^n : \omega_n((\vec{z}, \vec{x}), (\vec{q}, \vec{p})) = 0.$ Where $\omega_n : \mathbb{F}_p^{2n} \oplus \mathbb{F}_p^{2n} \to \mathbb{F}_p$; $((\vec{z}, \vec{x}), (\vec{q}, \vec{p})) \mapsto \vec{z} \cdot \vec{p} - \vec{x} \cdot \vec{q}$.

Geometry of single quopit stabiliser states

For single quopits, $\omega_1((z_0, x_0), (z_1, x_1)) = (z_0, x_0) \wedge (z_1, x_1)$ is the volume form!

Therefore, stabiliser states are in bijection with lines in $\mathbb{F}_p^2.$

The points on the lines are the stabilisers:

Definition The Clifford group \mathcal{C}^n_ρ for n quopits is the normaliser of $\mathcal{P}^{\otimes n}_\rho$ in the group of unitaries on $\mathcal{H}_{\bm\rho}^{\otimes n}\!\!: \ U \in \mathcal{C}_{\bm\rho}^n$ if and only if $U \mathsf{P} U^\dagger \in \mathcal{P}_{\bm\rho}^{\otimes n}$ for all $P \in \mathcal{P}_{\bm\rho}^{\otimes n}.$

Lemma

If S is a stabiliser group, and $C\in \mathcal{C}_p^n$, then CSC^\dagger is the stabiliser group of the stabiliser state $\left|\mathit{CSC}^\dagger\right\rangle=\mathit{C}\left|\mathit{S}\right\rangle$

Corollary

The group of affine isomorphisms $\mathbb{F}_p^{2n} \to \mathbb{F}_p^{2n}$ which preserve ω_n is isomorphic to \mathcal{C}_p^n modulo phase.

For single quopits, these are the affine isomorphisms that preserve the volume.

Lemma

The postselected projection of a stabiliser state $\ket{\psi}:\mathcal{H}_{p}^{\otimes (m+n)}$ onto a stabiliser state $\ket{\varphi}:\mathcal{H}_{\bm p}^{\otimes m}$ is a stabiliser state: $\left(\bra{\psi}\otimes I_{\bm n}\right)\ket{\varphi}:\mathcal{H}_{\bm p}^{\otimes n}.$

How can this be connected to the \mathbb{F}_{p} -affine picture in a clean way?????

Definition The prop of affine Lagrangian relations $AffL$ agRel_K has:

- Arrows $n \rightarrow m$ are given by maximally commuting affine subspaces of $S \subset \mathbb{K}^{2n} \oplus \mathbb{K}^{2m}$.
- **Composition** is given by relational composition. That is for $S \subseteq \mathbb{K}^{2n} \oplus \mathbb{K}^{2m}$ and $R \subseteq \mathbb{K}^{2m} \oplus \mathbb{K}^{2k}$:

 $R \circ S := \{ (\vec{x}, \vec{z}) \in \mathbb{K}^{2n} \oplus \mathbb{K}^{2k} \mid \exists \vec{y} \in \mathbb{K}^{2m} : (\vec{x}, \vec{y}) \in S, (\vec{y}, \vec{z}) \in R \}$

• The monoidal structure is given by the direct sum.

Theorem (Comfort and Kissinger [\[CK22\]](#page-26-0)) There is a projective equivalence between the quopit stabiliser theory and AffLagRel $_{\mathbb{F}_p}$

The stabiliser ZX -calculus (Booth et al. [\[BCC24b\]](#page-25-0)/Poór et al. [Poó+23])

Geometric interpretation of 1-dimensional spiders

1-dimensional spiders with labels $(a, b) \in \mathbb{K}^2$ represent lines in \mathbb{K}^2 with origin $\pm a$ and slope b:

0

 \mathcal{Z}^z $\ket{+}$ is a grey spider with label $(z, 0)$. $\mathcal{X}^{\times}\ket{0}$ is a grey spider with label $(-x,0)$. *n*-dimensional spiders labelled by $(0, G) \in \mathbb{K}^n \times \text{Sym}_n(\mathbb{F}_p)$ represent graph states.

For example taking
$$
G = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}
$$
, then:

[Gaussian quantum mechanics](#page-11-0)

The state space of a quantum particle in free 1D space, a **qumode**, is the Hilbert space of complex square-integrable functions:

$$
L^2(\mathbb{R}) \coloneqq \left\{ \varphi: \mathbb{R} \to \mathbb{C} \, \middle| \, \int_{\mathbb{R}} |\varphi(x)|^2 \, \mathrm{d}x < \infty \right\}
$$

This space is equipped with **position** and **momentum** observables $L^2(\mathbb{R}) \to L^2(\mathbb{R})$:

$$
\hat{q}f(x) := xf(x)
$$
 and $\hat{p}f := \frac{\partial f}{\partial x}$

and **displacement** operators (in analogy to Paulis) $L^2(\mathbb{R}) \to L^2(\mathbb{R})$:

$$
\hat{X}(s)\varphi(x) := \varphi(x-s) \quad \text{and} \quad \hat{Z}(t)\varphi(x) := e^{i2\pi tx}\varphi(x)
$$

Lemma

Displacement operators can be obtained by exponentiating position/momentum:

$$
\hat{X}(s) = \exp(is\hat{p}) \quad \text{and} \quad \hat{Z}(t) = \exp(it\hat{q})
$$

The problem with continuous-variable stabiliser theory

- Naïvely, one might try to associate maximally commuting subspaces of \mathbb{R}^{2n} to CV stabiliser states on $L^2(\mathbb{R}^n)$.
- However, the induced map $\mathbb{C} \to L^2(\mathbb{R}^n)$ is no longer continuous!
- Such CV stabilliser states are called "infinitely squeezed" by physicists because they have infinite energy.

The canonical such example is the Dirac delta distribution.

 \bullet We can resolve this problem by applying Gaussian convolution to AffLagRel $_{\mathbb{R}}$:

Quantum states obstained by the Gaussian convolution of CV stabilisers have the following form:

Definition

An *n*-qumode **Gaussian state** $\varphi \in L^2(\mathbb{R}^n)$ is given by:

$$
\varphi(\vec{x}) = \exp(i\alpha) \exp\left(i\vec{s}^T \vec{x}\right) \sqrt[4]{\det(\text{Im}(\Phi))/\pi^n} \exp\left(i(\vec{x} - \vec{t})^T \Phi(\vec{x} - \vec{t})/2\right)
$$

For some $\alpha \in [0, 2\pi)$, $\vec{s}, \vec{t} \in \mathbb{R}^n$, and $\Phi \in \text{Sym}_n(\mathbb{C})$ with $\text{Im}(\Phi) \succ 0$.

Definition Gaussian unitaries are those unitaries that "preserve Gaussianity."

Lemma

Post-selecting a Gaussian state on a Gaussian effect is Gaussian.

The nullifier formalism (folklore, but exposed in Gu et al. [\[Gu+09\]](#page-26-2), Menicucci et al. [\[MFL11\]](#page-26-3))

Definition

A nullifier of a CV quantum state φ is a +0-eigenvector $\hat{K}\varphi = 0$

In general, CV stabiliser "states" are nullified by real affine combinations of \hat{p} and \hat{q} :

Example

The Dirac delta is nullified by \hat{q} , and thus stabilised by exp($i\hat{p}$) = \hat{X} .

...whereas, Gaussian states are nullified by *complex* affine combinations:

Example

The **vacuum state** on one qumode (defined by $s = t = 0$ and $\Phi = i$) is nullified by the **annihilation** operator $\hat{a} = \hat{q} - i\hat{p}$.

One Gaussian state can have many different nullifiers...

The space of nullifiers of a Gaussian state can be captured in terms an affine Lagrangian subspace over the complex numbers:

Definition

A complex affine Lagrangian subspace $(S,\vec a)\subseteq \mathbb C^{2n}$ is positive when:

- $\vec{a} \in \mathbb{R}^{2n}$;
- for all $\vec{v} \in S$, then $i\omega_n(\vec{\vec{v}}, \vec{v}) \geqslant 0$.

Lemma (Booth et al. [\[BCC24a\]](#page-25-1))

Positive affine Lagrangian subspaces represent the nullifiers of both Gaussian states and CV stabiliser states:

- When S restricts to a real subspace, these represent precisely CV stabiliser states.
- Otherwise, these represent precisely Gaussian states.

We take the same approach as for stabilisers, and represent states/unitaries/postselections in terms of affine subspaces:

Definition

Let AffLagRel $_{\mathbb{C}}^{+}$ denote the sub-prop of AffLagRel $_{\mathbb{C}}$ of *positive* affine Lagrangian relations.

Theorem (Booth et al. [\[BCC24a\]](#page-25-1))

 ${\sf AffLagRel}_{{\mathbb C}}^+$ captures the nullifier theory for Gaussian quantum mechanics, formally extended with CV stabilisers.

The Gaussian ZX-calculus

Theorem (Booth et al. [\[BCC24a\]](#page-25-1))

We extend the graphical language for AffLagRel_R by a single state \odot (interpreted as the vacuum state) to obtain a presentation for ${\sf AffLagRel}_{{\mathbb C}}^+$, so that for all $\vartheta\in[0,2\pi)$ and $\theta \in (-\pi, \pi)$:

Corollary Because ${\sf AffLagRel}_{\mathbb C}^+ \hookrightarrow {\sf AffLagRel}_{\mathbb C}$ it's sound to make the identification $\llbracket \circ \llbracket = 0, i \circ \urcorner$ and use the equations of AffLagRel_C.

The vacuum state is the unique Gaussian distribution satisfying the Heisenberg uncertainty principle which is invariant under rotation.

In other words, it has uniform covariance in all dimensions. For a single qumode:

The second equation is a higher dimensional generalization of this property.

Dirac delta distribution Caussian density function

We can interpret the continuous-variable quantum teleportation algorithm of Braunstein and Kimble [\[BK98\]](#page-25-2):

We can interpret the LOv-calculus of Clément et al. $[CI(4+22]$:

The graph-theoretic representation for Gaussian states of Menicucci et al. [\[MFL11\]](#page-26-3) can be directly translated into our calculus:

The graph transformation rules all follow by completeness!

[References](#page-24-0)

- [BCC24a] Robert I. Booth, Titouan Carette, and Cole Comfort. *Complete equational* theories for classical and quantum Gaussian relations. 2024.
- [BCC24b] Robert I. Booth, Titouan Carette, and Cole Comfort. Graphical Symplectic Algebra. 2024.
- [BK98] Samuel L Braunstein and H J Kimble. "Teleportation of Continuous Quantum Variables". In: Physical Review Letters 80.4 (1998), p. 4.
- $[C16+22]$ Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. "LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits". In: 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Ed. by Stefan Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. Leibniz International Proceedings in Informatics (LIPIcs). ISSN: 1868-8969. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 35:1–35:16.
- [CK22] Cole Comfort and Aleks Kissinger. "A Graphical Calculus for Lagrangian Relations". In: Electronic Proceedings in Theoretical Computer Science 372 (Nov. 2022), pp. 338–351.
- [Gu+09] Mile Gu, Christian Weedbrook, Nicolas C. Menicucci, Timothy C. Ralph, and Peter van Loock. "Quantum computing with continuous-variable clusters". In: Physical Review A 79.6 (June 2009).
- [MFL11] Nicolas C. Menicucci, Steven T. Flammia, and Peter van Loock. "Graphical calculus for Gaussian pure states". en. In: Physical Review A 83.4 (Apr. 2011). arXiv: 1007.0725.
- $[Po6+23]$ Boldizsár Poór, Robert I. Booth, Titouan Carette, John Van De Wetering, and Lia Yeh. "The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification". In: Electronic Proceedings in Theoretical Computer Science. Twentieth International Conference on Quantum Physics and Logic. Vol. 384. Paris, France, Aug. 29, 2023, pp. 220–264.