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This document contains my ramblings about thinning links in MLL and
the connection to the graphical calculus for pointed profunctors.

In [WGZ22] they reprove the coherence theorem for monoidal categories;
constructing a strict monoidal category which is monoidally equivalent to a
given monoidal category by inductively building up the strictification functor.
Then they regard the coherence maps of the lax monoidal part of the functor
as generators which we called tensor and unit introduction. The inverses to
the coherence maps regarded as generators which we called cotensor and unit
removal.

Very similar similar notation exists for proof nets for linearly distributive
categories except the situation is more complicated because now there are two
monoidal structures laxly “linearly” distributing over each other [BCST96].
Proof nets for linearly distributive categories are more nuanced than string
diagrams for monoidal categories. One such nuance is the complication with
units: extra virtual wires called “thinning links” are needed to unambigu-
ously decide the connectivity of the units. Without thinning links then a
proof net can be spuriously identified with distinct maps. Another prob-
lem is that one can draw diagrams that appear to be proof nets which are
not valid in the sense that they do not correspond to a map in the linearly
distributive category. For example one can form cycles using the graphical
calculus which are not allowed. One way to tell if a proof net is valid is via
the sequentialization procedure described in [BCST96, Section 2.4]. This is
in some sense a linearly distributive analogue to the inductive strictification
procedure for monoidal categories described in [WGZ22]; although it is not
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itself a strictification procedure. This involves inductively “boxing” a proof
net, iterative adding the connectives and generators to the box. If the whole
circuit is boxed when the procedure terminates, then one can conclude that
the proof net is well-formed. This procedure was later reframed in terms of
linearly distributive functor boxes in [CS99]. A linearly distributive functor
(linear functor for short) consists of a lax monoidal functor and an oplax
monoidal functor which distribute over each other appropriately. In their
paper they establish a graphical calculus for lax and oplax monoidal functors
to this end. In the graphical notation of [CS99], this is asymmetry is resolved
with a “principle-port” on the side of the functor box where the wires are
exiting from; so that the wires exiting from the principle port are bundled
up and tensored together. Dually, an oplax monoidal functor is drawn with
the principle port on the side of the box in which the wires are entering.

Note that monoidal categories are a particular case of linearly distributive
categories where the linear distributor between both tensor products is the
monoidal associator, so that both tensors are equal on the nose. There is
still some subtlety here, linear functors betwen monoidal categories are not
strong monoidal, they are instead Frobenius monoidal. In [CS18], they state
without proof that thinning links are not needed for proof nets for monoidal
categories, so that proof nets for monoidal categories are exactly the string
diagrams in [WGZ22].

Functor boxes were independently rediscovered by [Mel06], where they
were also applied to strong monoidal functors. The most aesthetically pleas-
ing graphical calculus for lax/oplax/frobenius/strong monoidal functors in
my opinion is contained in [McC12]. In this setting, they draw the “box” of
a lax monoidal functor F : X→ Y as string diagrams in X embedded withing
the Poincaré dual of the shape generated by a monoid; this shape itself being
embedded in the string diagrams for Y. In this notation the principle port
corresponds to where the wires exit the root of the Poincaré dual of a tree
shape. For an oplax monoidal functor they do the same with a comonoid.
For a strong monoidal functor they have shapes generated by a monoid and
comonoid which are inverse to each other.

Therefore, take the any strictification of a monoidal category S : X→ X.
One would like to think that the strong monoidal functor boxes of [McC12]
applied to S would reproduce exactly the result of [WGZ22]; however there
is a snag. In [McC12], the monoid and its inverse which generate the shapes
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of the functor boxes are implicitly assumed to be strict. That is, they draw
string diagrams for strict monoidal categories within the boxes, which breaks
the whole premise.

There is a seemingly closely related graphical calculus called “internal
string diagrams” [BDSPV15], although they explicitly state that it is a
heuristic and is not formalized. In their setting they draw string diagrams
which “look inside the points” of Vect-enriched profunctors. This looks very
much like the functor box notation of [McC12]. Profunctors give an abstract
notion of “shapes” where, for example, the the covariant and contravari-
ant Yoneda embeddings of monoidal categories induce pseudomonoids and
pseudocomonoids in profunctors. Looking inside the points of the shapes
generated by these pseudomonoids and pseudocomonoids, one has has a map
which has to conform to this shape. The internal string diagrams are thus
drawn within the Poincaré dual of the string diagrams for the monoidal bicat-
egory of profunctors. This was later rediscovered in the Set-enriched setting
where they were called “open diagrams” [Rom20]. In [Rom20], they give
an explicit description what is meant by “the points inside of profunctors”
describing the category Prof∗ of pointed profunctors. Although one must
note that the this graphical calculus is still not fully worked out. Because
we don’t need Vect-enrichment here, will refer to this graphical calculus for
Set-enriched profunctors unambiguously as the graphical calculus for pointed
profunctors. Very recently, there has been more work towards formalizing
these different notions of functor boxes [BR23].

The graphical calculus for pointed profunctors still doesn’t make clear
the connection to proof nets.

Inspired by the coherence via universality approach of Hermida [Her01,
Her00], which I will touch on later, I wondered if there is a universal way
to produce the strictification of a monoidal category in a way that simul-
taneously reproduces proof nets for monoidal categories. The appeal of a
universal approach is that it would provide a general recipe to create string
diagrams for other algebraic structures in monoidal categories. However, the
universal approach of [Her00] is asymmetrical and needs to be adapted to
reproduce proof nets for monoidal categories.

In the end, I didn’t manage to succeed; however, I think that the route
that I took in order to attempt this is insightful, and could potentially be
useful to others.
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1 Pointed categories and multicategories

First, we categorify a monoid in a monoidal category:

Definition .1. A pseudomonoid in a monoidal bicategory is an object C
equipped with two 1-cells C ⊗ C → C and 1→ C drawn as follows:

,

as well as three 2-cells, the associator, left and right unitors:

α
=⇒ uL

==⇒ uR

⇐==,

Satisfying the Mac Lane pentagon coherence equation (where the dashed blue
box indicates where the nonidentity natural transformation is being applied):

α
=⇒ α

=⇒ α
=⇒

α
=⇒ ∼=

α
=⇒

q q

As well as the unit coherences:

α
=⇒

q

uL

==⇒

q

uR

==⇒
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A pseudomonoid is strict when the associator and unitors are idenities.

If we take Cat to be a monoidal bicategory with respect to the Cartesian
product, then monoidal categories have a slick definition:

Lemma .2. Monoidal categories are pseudomonoids in Cat and strict monoidal
categories are strict pseudomonoids in Cat.

Contrast this with the view of small strict monoidal categories as cate-
gories internal to monoids between spans of sets; in the non-internal setting,
the ability to express the pseudoness of the monoid allows the tensor product
to not be strict.

By looking at the points inside of Cat, this way of viewing a monoidal
category hints at some connection to proof nets:

Definition .3. The symmetric monoidal bicategory of pointed categories
is the coslice bicategory Cat∗ := 1/Cat. Explicitly, this has:

0-cells: Pointed categories, pairs consisting of a category along with a
chosen object of that category:

(X, X ∈ X0)

1-cells: Pointed functor between pointed categories, pairs consisting of
a functor between the underlying categories and a morphism that pre-
serves the point:

(F : X→ Y, f ∈ Y(F (X), Y )) : (X, X ∈ X0)→ (Y, Y ∈ Y0)

2-cells: Given two parallel pointed functors (F, f), (G, g) : (X, X) →
(Y, X), a pointed natural transformation is natural transformation φ :
F → G that preserves the distinguished map, so that φX : g = f .

Composition of the 1-cells and 2-cells is given pointwise; and the monoidal
structure is given by the Cartesian product.

Recall the discussion about the graphical calculus for pointed profunctors.
We will first restrict this graphical calculus to pointed categories and then
return to pointed profunctors. We use the package in [BDSPV15] to typeset
the diagrams.
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Given a pointed functor, (1X, f ∈ X(1X(X), Y )), draw the identity as a
cylinder and the map inside the cylinder as follows:

X

Y

f

Think of the maps inside the category as “living” within the cylinder; wherein
one can apply rewrite rules coming from the equational theory of the category.

Functors are drawn as membranes between separating the cylinder for
the domain and codomain category; functoriality means that things can pass
up through the membrane:

F

X

F (Y )

f

= F

X

F (Y )

F (f)

If X is a monoidal category, then one can tensor maps within the cobordism
using the tensor product of X, so that for f : W → X and g : Y → Z, we
have the the pointed functor (1X, f× ∈ X(1X(W ⊗ X), (Y ⊗ Z))) with the
following graphical representation:

Y ⊗ Z

W ⊗ X

f g

Moreover, for every map with a binary tensor factorization of the domain
f : X ⊗ Y → Z, we can use the external tensor product of Cat to obtain a
pointed functor:

( ⊗ : X2 → X, f ∈ Y(X ⊗ Y, Z)) : (X2, (X, Y ) ∈ X2
0)→ (X, Z ∈ X0)

Drawn as follows:
Z

X Y

f
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And for every state f : I → X, there is a pointed functor

(I : 1→ X, f ∈ Y(I,X)) : (1, ∗ ∈ 1)→ (X, I ∈ X0)

Drawn as follows:
A

f

Consider the action of the associator and unitor on the points:

f

g h

α
=⇒

f
g

h
,

f

g
h

uL

==⇒
f

g

h

,
f

g
h

uR

==⇒
f

g

h

One way in which this diverges from proof nets is that these generators form
a monoidal bicategory, not a monoidal category; forcing one to keep track
of which 2-cells have been applied. A priori, in this setting, there is no
guarantee that two different ways to get to the same diagram are equal.

This issue can be resolved via the multicategories. Informally, a multicat-
egory is like a category, except for the multimaps now go from lists of objects
in the domain to a single object in the codomain. Composition of multimaps
corresponds to plugging a single output into an input, nesting trees. Strict
monoidal categories correspond to the representable multicategories where
every list of objects can be tensored together.

Internal multicategories can be constructed in a very similar way to in-
ternal categories (see [Lei04, Defininition 4.2.2] for a more general, thorough
treatment):

Definition .4. MultiSpan is the bicategory with:

0-cells: Sets

1-cells:

[X]
f←− A

g−→ Y in Set

X
(A,f)−−−→ Y in MultiSpan

The identity on X is given by the span:

[X]
ηX←− X = X
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The composition of multispans

X
(f,A,g)−−−−→ Y

(h,B,k)−−−−→ Z

is given by taking the following pullback

[A][g] ×h B
π1

&&

π0

xx

[A]
[g]

&&

[f ]

{{

B
h

xx k

##

[[X]]
µX

zz

[Y ]

[X] Z

Yielding a 1-cell:

X
(π0;[f ];µX ,[A][g]×hB,π1;k)−−−−−−−−−−−−−−−→ Z

Where, recall that [−] : Set → Set is the list monad where the unit
ηX(x) 7→ [x] inserts into the singleton list and the multiplication µ
flattens lists of lists.

2-cells: The 2-cell structure is the same as for spans and coherence 2-cells
are essentially the same as for spans.

Definition .5. A (small) multicategory is a monad is MultiSpan.

So we have a monad on the 1-cell [Ob]
dom←−− Ar

codom−−−→ Ob. As opposed to
the setting for internal categories, the domain is now a list of objects. The
way that the composition and unit are defined plugs the single object in the
codomain into an element in the list of objects in the domain.

An equivalent way to define a pseudomonoid in Cat would be to ask for a
monoidal pseudofunctor 1 → Cat from the terminal monoidal category into
Cat. Similarly a multifunctor from 1→ Cat yields what is sometimes called
an unbiased monoidal category. This is very much like a monoidal category,
except instead of there being a tensor product bifunctor, there is is a tensor
product functor Xn → X for every arity n ∈ N which are compatible with
each other.

Hermida [Her00], showed that when one regards an (unbiased) monoidal
category as a multifunctor F : 1→ Cat, by computing the following pullback
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in the bicategory of 2-multicategories, the Grothendieck category
∫
FX is

precisely a representable multicategory:∫
F

π1 //

π0
��

Cat∗

��

1
F
// Cat

And moreover, the projection map π0 : FX → 1 is a fibration of multicat-
egories. He shows that there is an equivalence of bicategories between the
multifunctor category [1,Cat] and the subcategory of the slice category of
multifibrations over 1. In some sense, this equivalence can be regarded as an
unbiased version of the coherence theorem for monoidal categories. This is
quite elegant because strictification in this setting is a universal construction.
However, from a string diagrammatic perspective, this is unsatisfying. In-
deed, despite representable multicategories being in bijection with monoidal
categories, the way that composition is defined in multicategories biases the
inputs over the outputs; moreover, we are only allowed to compose along one
object at a time.

2 Pointed profunctors and polycategories

To attempt to rectify this with the 2-sided nature of proof nets, we recall the
category of internal profunctors described in Definition ??, which is the 2-
sided version of Cat. In this section it will be easier to work with profunctors
enriched in Set, as opposed to profunctors internal to Set. This is more
general as well, because it allows us to work with locally small categories,
rather than merely small categories:

Definition .6. The category of Prof, of profunctors internal to Set has:

0-cells: Categories

1-cells: The morphisms are profunctors given by the following correspon-
dence:

F : Xop × Y→ Set ∈ Cat

F : X −7−→ Y ∈ Prof

The composition of profunctors P : X −7−→ Y and Q : Y −7−→ Z is given by
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the coend:

P ;Q :=

∫ Y ∈Y
P (−, Y )×Q(Y,=) : X −7−→ Z

Where the coend of a functor F : Xop × X → Set is given by the
coequalizer diagram (in Cat):

∐
X1,X2∈X

X(X1, X2)× F (X1, X2) ⇒
∏
X∈X

F (X,X)→
∫ X∈X

F (X,X)

The identity profunctor on X is given by the hom functor

X(−,=) : Xop × X→ Set

Intutitively, this is a categorification of trace of a matrix where the nat-
ural numbers are replaced with categories, and the commutative ring
is replaced with Set. Thus, the composition of profunctors categorifies
matrix multiplication.

2-cells: 2-cells between parallel profunctors P,Q : X −7−→ Y are natural
transformations between the underlying profunctors P,Q : Xop × Y→
Set.

Compact closed structure: The symmetric monoidal structure of Prof
is given by extending the Cartesian structure in Cat. The units and
counits of the compact closed structure are given by the hom functor.

A comprehensive review of the basic theory of profunctors and their coend
calculus is contained in [Lor21]. There are two classes of profunctors which
will be of interest to us:

Definition .7. A profunctor X −7−→ Y is representable when it is naturally
isomorphic to the profunctor F∗ := Y(F−,=) for a functor F : X→ Y.

Dually, a profunctor Y −7−→ X is corepresentable when it is naturally
isomorphic to the profunctor F ∗ := Y(−, F =) for a functor F : X→ Y.

There are two embeddings of Cat into Prof that preserve the monoidal
structure (formally, they are strong monoidal pseudofunctors):
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Definition .8. The representable embedding (−)∗ : Catco → Prof is the
identity on objects, covariant on 1-cells and contravariant on 2-cells. It takes
functors F : X→ Y to profunctors F∗ : X −7−→ Y.

Dually, the corepresentable embedding (−)∗ : Catop → Prof is the identity
on objects, contravariant on 1-cells and covariant on 2-cells. It takes functors
F : X→ Y to profunctors F ∗ : Y −7−→ X.

These two embeddings interact nicely:

Lemma .9. Given any functor F : X → Y, there is an adjunction F∗ ⊣ F ∗

with unit ηF and counit εF .

For example, if we draw the two embeddings of the pseudomonoid as
follows:

⊗∗ =: I∗ =:, ⊗∗ =: I∗ =:,,

Then we have the following 2-cells:

η⊗
==⇒ , ε⊗

==⇒ , εI
=⇒ , εI

=⇒

Indeed for any monoidal category, the counit for the tensor product adjunc-
tion induces lax-Frobeniusators:

φL :=


ε⊗
==⇒ α−1

∗==⇒ η⊗
==⇒



φR :=


ε⊗
==⇒

α∗==⇒ η⊗
==⇒


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These Frobeniusators interact with the (co)associators and (co)unitors of
the (co)omonoid and adjoints to to satisfy several coherences forming what
Franco et al call “map monoidal object” [FSW09, Remark 6.3]. They also re-
mark that when the monoidal category is additionally autonomous, so that
it has duals, the Frobeniusators are invertible. As a technical note, map
monoidal objects in Prof are not precisely monoidal categories, as this bicon-
ditional only holds for Cauchy-complete categories.

For context, a similar unpublished result Shulman discussed on the n-
category cafe [Shu19] as well as in his paper [Shu20], characterizes biclosed
linearly distributive categories and *-autonomous categories as, respectively,
lax and pseudo-Frobenius algebras in the compact closed bicategory multi-
variable adjunctions. This refines the similar result of [Str04], where it is
shown that Cauchy complete *-autonomous categories are in bijection with
Frobenius pseudomonoids in Prof.

We can repeatedly apply natural transformations to reduce diagrams com-
posed of the pseudo-Frobenius algbra structure coming from a monoidal cat-
egory; however, to make things easier for us, from now on we will assume that
the scalars are central, so that they commute with all maps in the monoidal
category.

Definition .10. Fix a monoidal category X with central scalars. Say that a
connected diagram in Prof composed of the generators of the corresponding
pseudomonoid is in spider normal form when it is any of the four following
types of diagrams (the last of which we will call a scalar spider):

. . .

...

· · ·

· · ·

=:

· · ·

· · ·

, , ,

Say that a not necessarily connected diagram is in stratified spider nor-
mal form when it can be composed into a strictly progressive sequence of
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nonscalar spiders followed by a strictly progressive sequence of scalar spiders:

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

...

Lemma .11. Given a monoidal category X, and a connected diagram in Prof
generated by the 1-cells of the pseudo-Frobenius structure induced by X one
can always reduce the diagram to spider normal form by repeated application
of

φL, φR, η⊗, α∗, α
∗, (uL)∗, (u

L)∗, (uR)∗, (u
R)∗

As well as the symmetric monoidal structure of Prof.

Furthermore, given any not-necessarily connected diagram can be reduced
to stratified spider normal form using the same collection of 2-cells, where
the order of the scalars spiders with respect to the tensor product is preserved
by normalization.

This lemma is an obvious corollary of spider theorem for special Frobenius
algebras; however, the following is not so immediate:

Conjecture .12. The stratified spider normal form is strictly confluent so
that any parallel 2-cells witnessing the reduction to the spider normal form
are equal.

In some sense, it seems as if this should be seen to follow from Mac Lane’s
coherence theorem for monoidal categories [Lan78]; however, the author is
unable to prove it. The rest of this chapter relies on this categorification of
the spider theorem being true.
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A similar result is proven for diagrams generated by the free pseudo-
Frobenius algebra [DV19]. However, because the monoid and the comonoid
are not required to be adjoint to each other, they require that the shapes
be simply connected. They also require that the shape has a nontrivial
boundary, so that scalars are not allowed.

Let us “look inside” Prof just as we did for Cat, to see how normalization
acts on points.

Definition .13. The symmetric monoidal bicategory of pointed profunc-
tors, Prof∗ has:

0-cells: Pointed categories:

(X, X ∈ X0)

1-cells: A pointed functor between pointed categories is a pair consisting
of a profunctor between the underlying categories and a morphism that
preserves the point:

(F : X −7−→ Y, f ∈ F (X, Y )) : (X, X ∈ X0)→ (Y, Y ∈ Y0)

2-cells: Given two parallel pointed functors (F, f), (G, g) : (X, X) →
(Y, Y ), a pointed 2-cell is 2-cell φ : F ⇒ G of profunctors that preserves
the distinguished map, so that φX : g = f .

The graphical calculus for pointed profunctors is essentially the same as
for pointed categories (recall that the graphical calculus for pointed categories
which we used is already adapted from pointed profunctors). Except now,
due to the two different Yoneda embeddings, we can factorize the domain
and codomain of maps. For example, consider the action unit and counit for
the tensor product:

f

g

ε⊗
==⇒

f

g

, f g
η⊗
==⇒

f g

And similarly for the tensor unit:

g

f

εI
=⇒

f

g

,
ηI

=⇒
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These diagrams have a striking resemblance to proof nets. One might näıvely
try to obtain proof nets for monoidal categories in terms of quotienting the
subcategory of Prof∗ generated by the the monoidal structure by forcing the
unit and counit of the adjunction to be equalities; however, the prospect
of obtaining a monoidal category as a quotient of a monoidal bicategory is
highly nontrivial.

If we are more clever, we can obtain the associator regarded as an element
of the hom-profunctor:

(X(−,=), αX,Y,Z) : (X(−,=), (X ⊗ Y )⊗ Z) −7−→ (X(−,=), X ⊗ (Y ⊗ Z))

By normalizing this diagram:

X ⊗ (Y ⊗ Z)

(X ⊗ Y ) ⊗ Z

φL

==⇒

X ⊗ (Y ⊗ Z)

(X ⊗ Y ) ⊗ Z

η⊗;η⊗
====⇒

X ⊗ (Y ⊗ Z)

(X ⊗ Y ) ⊗ Z

Similarly, we get the inverse associator by connecting the shapes in the other
way:

(X ⊗ Y ) ⊗ Z

X ⊗ (Y ⊗ Z)

φR

==⇒

(X ⊗ Y ) ⊗ Z

X ⊗ (Y ⊗ Z)

η⊗;η⊗
====⇒

(X ⊗ Y ) ⊗ Z

X ⊗ (Y ⊗ Z)
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We can do a similar thing for the left and right unitors:

I ⊗ A

A

(uL)∗
===⇒

I ⊗ A

A

,

A ⊗ I

A

(uR)∗
===⇒

A ⊗ I

A

As well as their inverses:

I ⊗ A

A

(uL)∗

===⇒

A

I ⊗ A

,

A ⊗ I

A

(uR)∗

===⇒

A

A ⊗ I

In the setting of proof nets, the tensor is inverse to the cotensor and the unit
introduction is inverse to the unit removal.

3 Monoidal categories as displayed categories

The graphical calculus for Prof∗ is slightly closer to proof nets than for Cat∗
these 2-cells are at least adjoint. We want to turn the adjunctions into
equalities somehow. We attempt this by regarding the normalization of the
diagrams in Prof∗ as the maps themselves. We need the following definition
to this end:

Definition .14. A displayed category is an ordinary category D equipped
with a lax normal functor F : D → Prof. That is to say, F has the data of:

� A function F : D0 → Prof0 taking objects of D to categories.

� For every pair of objects X, Y ∈ D0, a function FX,Y : D(X, Y ) →
Prof(F (X), F (Y )) such that 1F (X) = FX,X(1X).

� For every triple of objects X, Y, Z ∈ D0, a 2-cell, with components at
(f : X → Y, g : Y → Z):

FX,Y,Z(f, g) : FX,Y (f);FY,Z(g)⇒ FX,Z(f ; g)
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Such that for any diagram W
f−→ X

g−→ Y
h−→ Z in D the following diagram

commutes in Prof:

(FW,X(f);FX,Y (g));FY,Z

FW,X,Y (f ;g);1FY,Z (h)
��

(α;)FW,X (f),FX,Y (g),FY,Z (h)
// FW,X(f); (FX,Y (g);FY,Z(h))

1FW,X (f);FX,Y,Z(g,h)
��

FW,Y (f ; g);FY,Z(h)

FW,Y,Z(f ;g,h) ++

FW,X(f);FX,Z(g;h)

FW,X,Z(f,g;h)ss

F (W,Z)(f ; g;h)

Where α; is the associator for composition in Prof.

Let csfa denote the pro for special Frobenius algebras with central scalars.
We can recast the conjectured spider theorem in this light:

Conjecture .15. Given any monoidal category X with central scalars, there
is a displayed category FX : csfa→ Prof such that:

� (FX)(n) = Xn

� (FX)n,m takes diagrams in csfa to (stratified) spiders in Prof.

� The natural transformation (FX)n,m,k performs (stratified) spider fu-
sion.

This is equivalent to the (conjectural) spider theorem. The confluence of
the spider normalization corresponds to commutation of the pentagon in the
definition of a displayed category.

This way of framing the categorified spider theorem lends itself to the fol-
lowing canonical construction, usually attributed to Bénabou [Bén72]. This
is a variation of the eponymous construction of Grothendieck for pseudo-
functors from ordinary categories into Cat, which we alluded to early in the
multicategorical setting:

Theorem .16 (Bénabou-Grothendieck construction). Given a displayed cat-
egory F : D → Prof, the Bénabou-Grothendieck category, ΠF is given by the
pullback:

ΠF
π1 //

π0
��

Prof∗

��

D
F
// Prof

Where Prof∗ → Prof is the canonical projection. Concretely ΠF has:
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Objects: Pairs (X ∈ D0, X
♯ ∈ (F (X))0)

Maps: The maps are pointed profunctors:

(f, f ♯) : (X,X♯)→ (Y, Y ♯)

where f ∈ D(X, Y ) and f ♯ ∈ FX,Y (f)(Y
♯, X♯)

Identity: 1(X,X♯) := (1X , 1X♯)

Composition: Given a composable pair:

(X,X♯)
(f,f♯)−−−→ (Y, Y ♯)

(g,g♯)−−−→ (Z,Z♯)

The composite is defined as follows where (̃f ♯, g♯) is the canonical ele-
ment induced by the coend on (f ♯, g♯):

(f, f ♯); (g, g♯) := (FX,Y,Z(f, g))(̃f ♯, g♯)

Moreover, the first projection map π0 : ΠF → D is a (strict) functor.

We can actually go the other direction. Given some fixed D, this ex-
tends to an equivalence of categories between the slice category Cat/D and
the lax normal functor category [D,Prof]. Bénabou gives a detailed argu-
ment in proving this equivalence in his notes [Bén00]. We won’t restate this
equivalence of categories, as it takes considerable effort to expose.

Note that [BZ20] transported the work of Hermida on coherence via
universality in the multicategorical setting to the *-polycategorical setting:
where the inputs and outputs are now both lists of objects with duals.
There is a similar construction of internal polycategories to internal cate-
gories and internal multicategories due to [Kos05]; however, it is quite a
bit more complicated to describe formally. In [BZ20], they construct the
Bénabou-Grothendieck *-polycatgory, coming from a displayed *-polycategory
1 → Prof. However, we can not directly appeal to this result if we want to
recapture proof nets. This is because the composition in polycategories is
defined only with respect to a single object at a time. So the counit for the
tensor product doesn’t even make sense because we can not form cycles.

The displayed category FX : csfa→ Prof which we constructed is in some
sense trying to recapture this way of looking at things. Let us see what
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happens when we compute the Bénabou-Grothendieck category of FX (note
that there is a monoidal version of the Cat-valued Grothendieck construction
[MV20]; however we use the non-monoidal Prof-valued one because we need
to two-sided nature of Prof):

Lemma .17. The indexed category ΠFX has a concrete presentation:

Objects: Finite lists of objects in X.

Maps: Given two finite lists X = [X0, . . . , Xn−1] and Y = [Y0, . . . , Ym−1]
of objects in X, a map from X → Y is a pointed profunctor

(P, f) : (Xn, X) −7−→ (Ym, Y )

Generated by the (co)tensor and (co)unit of the monoidal structure of
X.
The equality of these maps is modulo the equivalence relation generated
by the congruence (P, f) ∼ (Q, g) when Q and P are normalized to
the same stratified spider ν0 : P ⇒ S ⇐ Q : ν1, where moreover, the
normalization agrees on points so that ν0(f) = ν1(g).

Identity: The identity on (Xn, X) is the identity in pointed profunctors

1(Xn,X) = (X(−,=)n, 1X)

Composition: The composition is the composition of pointed profunc-
tors.

This is a strict monoidal category. The tensor product is given by the tensor
product in Prof∗, so that the projection functor π0 : ΠFX → csfa is strict
monoidal.

In ΠFX, the components of the unitors and associators that we drew be-
fore as 2-cells are now merely maps which are inverse to each other. Moreover,
η⊗ now induces the equality:

f

g

=

f

g
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However, this is still not proof nets. We can only normalize connected com-
ponents. For example, the following equation does not hold because the
profunctors in which the string diagrams are drawn are not connected:

̸=

However, if in context Γ we knew that the profunctors were connected then
we could apply this rewrite rule:

· · ·

· · ·

Γ =

· · ·

· · ·

Γ

Similarly:

̸=

However, we know that the profunctors are connected in context Γ, we have:

· · ·

· · ·

Γ =

· · ·

· · ·

Γ
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To obtain proof nets, we would want all components to be connected.

In order to attempt this, remark that for any finite nonempty list of
objects X = [X0, . . . , Xn−1] in X there is an idempotent (sX , s

♯
X) = eX :

X → X in ΠFX where sX is the fully connected spider from Xn → Xn and
s♯X is the tensor factorized identity s♯X = ⊗n−1

i=0 1Xi
regarded as an element of

sX . Define e[] = (1, ∗).
Consider the following example for the sake of illustration:

e[X0,X1,X2] =

X0 X1 X2

X0 X1 X3

We can regard these idempotents as the property that the boundary be con-
nected, and obtain a new strict monoidal category by splitting them:

Definition .18. Take NX := Split{eX | X∈[X0]}(ΠFX); that is, the full sub-
category of the the Karoubi envelope of ΠFX with objects (X, eX), for every
finite list of objects in X. Concretely NX has:

Objects: Nonempty finite lists of objects in X.

Maps: The maps (P, f);X → Y ∈ NX are given by maps (P, f) : X →
Y ∈ ΠFX where the top boundaries of P are connected together, and
the bottom boundaries are connected together.

Composition: Same as in ΠFX.

Identity: Same as in ΠFX.

Monoidal structure: Given two (P, f);W → X and (Q, g);Y → Z

(P, f)⊗ (Q, g) := eW,Y ; (P ×Q, (f, g)); eX,Z

This monoidal category is very close to the strictification of a monoidal
category; however, it is not quite there. There is no way to eliminate the
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scalars in this category. The following equation does not hold:

̸=

Moreover, the top and bottom boundaries need not be connected to each
other, so we still don’t recover the following desired equations:

̸= , ̸=

If we additionally imposed the following equations as a quotient on NX

= , =

this would yield a monoidal category in which all components are connected.
This appears to recapture proof nets for monoidal categories in the setting
where the scalars are central; however, the only reason this works is by
direct appeal to the coherence result of [WGZ22]. This doesn’t give any
deep insight into why thinning links are not needed for monoidal categories,
but are needed for linearly distributive categories.

The problems with units in *-autonomous categories and linearly dis-
tributive categories has long been known. For example, [Hou08] devotes his
entire thesis to developing unitless multiplicative linear logic for this reason.
However, it is disappointing that our näıve approach doesn’t seem escape the
quagmire of units in the degenerate case of monoidal categories where there
is only one tensor product.

Nevertheless, I think there is a lot more to be done here; a proof of the
uniqueness of the stratified spider normal form, or some variation of such,
being the most important. It seems likely that that in order to precisely
recapture proof nets for monoidal categories, we would have to change the
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setting in which we are computing the Bénabou-Grothendieck construction
away from categories to some generalized version of polycategories where one
can compose along multiple maps at the same time. In this setting, the cat-
egory we are displaying over would no longer be scfa, everything would have
to be connected. Then the analagous Bénabou-Grothendieck construction
would connect all diagrams together.

The drawback of taking such approach, would be the difficulty of changing
the displaying category. In the setting we have described, one could imagine
that the displaying monoidal category is not only generated by a Frobe-
nius algebra. For example, when one has two monoidal categories which are
related by a strong monoidal functor, one would hope to adapt the index-
ing category to be generated by two Frobenius algebras on different objects
along with a Frobenius algebra homorphism between them; then the total,
monoidal category would have two different types of objects for each category
glued together by the functor.

Perhaps the approach we have taken here, or some variation thereof is the
correct level needed to glue proof nets of monoidal categories together. If we
just forget about the units and change the indexing category to be generated
by interacting non-unital, non-counital Frobenius algebras, the induced total
monoidal category could potentially be useful for the concrete purpose of cal-
culation: where one doesn’t have to worry about keeping track of coherence
information. This idea of glueing string diagrams for monoidal categories has
been explored in [LZ23]; although they use the graphical calculus for pointed
profunctors, so one has to keep track of coherence information.
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